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roles of climate change and urbanisation
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Abstract Urbanisation and climate change are two global
change processes that affect animal distributions, posing crit-
ical threats to biodiversity. Due to its versatile ecology and
synurbic habits, Kuhl’s pipistrelle (Pipistrellus kuhlii) offers
a unique opportunity to explore the relative effects of climate
change and urbanisation on species distributions. In a climate
change scenario, this typically Mediterranean species is ex-
pected to expand its range in response to increasing tempera-
tures. We collected 25,132 high-resolution occurrence records
from P. kuhlii European range between 1980 and 2013 and
modelled the species’ distribution with a multi-temporal ap-
proach, using three bioclimatic variables and one proxy of
urbanisation. Temperature in the coldest quarter of the year
was the most important factor predicting the presence of

P. kuhlii and showed an increasing trend in the study period;
mean annual precipitation and precipitation seasonality were
also relevant, but to a lower extent. Although urbanisation
increased in recently colonised areas, it had little effect on
the species’ presence predictability. P. kuhlii expanded its geo-
graphical range by about 394 % in the last four decades, a
process that can be interpreted as a response to climate
change.
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Introduction

Species distribution may change in response to a variety of
factors that act at different spatial scales. Climate change and
land cover modifications are two major global change pro-
cesses affecting animal distributions worldwide, with critical
implications for conservation (Jetz et al. 2007; Van Dyck
2012; Visconti et al. 2015).

Climate change is expected to impact heavily on European
fauna in the near future, with significant loss of diversity—
particularly in southern Europe—that will not be offset by
species shifts, thus producing a continental biological homog-
enisation. The same general trend is predicted for the Medi-
terranean basin, with mammalian communities potentially be-
ing deeplymodified by extinctions and range shifts (Maiorano
et al. 2011). Climate-change-related range shifts or reductions
have been frequently documented both in latitude (Shoo et al.
2006; Chen et al. 2011) and altitude (Moritz et al. 2008; Rowe
et al. 2010), particularly in specialised taxa. By contrast, range
expansions involving generalists or highly adaptable species
appear rare.
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Urbanisation is another global change process potentially
influencing the distribution of organisms whose effects may
not be easily distinguished from those of climate change (e.g.
Tomassini et al. 2014). Urbanisation is a non-directional pro-
cess characterised by the replacement of natural habitats with
built-up areas (Antrop 2004). Europe has a long-standing his-
tory of human-induced landscape modification starting in the
Holocene, 10,000 years ago (Antrop 2004), and landscape
transformation has by no means ended: recent trends show
that urbanisation is still taking place in vast areas of the con-
tinent, particularly in central and eastern regions (Palang et al.
2006). This dramatic process is certainly among the most
powerful drivers of changes in wildlife distribution in the
Anthropocene (Steffen et al. 2011). Besides replacing and
fragmenting natural habitats, expanding urban areas are also
typically associated with chemical, light and noise pollution
(Antrop 2004; Chace and Walsh 2006; Bradley and Altizer
2007; Stone et al. 2009; Perugini et al. 2011; Bennie et al.
2014). Although most animal species avoid urban areas,
some, called Bsynurbic^ species, may either tolerate urbanisa-
tion or even successfully exploit human settlements (Patterson
et al. 2003; Chace and Walsh 2006; Baker and Harris 2007).

Bats are well-suited models to explore wildlife responses to
human-induced habitat modifications. These mammals are in
most cases multiple-habitat specialists, which depend on spe-
cific roosting and foraging habitats, whose loss or alteration
have therefore seriously affected the population status of
many species (Van der Meij et al. 2015). Many bat species
find few or no foraging and roosting opportunities in urban
areas (for a review, see Russo and Ancillotto 2015). In con-
trast, other species tolerate or even thrive in urbanised land-
scapes, for instance because they roost in buildings or forage
at streetlamps (Kunz 1982; Rydell 1992). Activity patterns of
bats are closely linked to climatic conditions, particularly tem-
peratures, which strongly influence both their daily torpor as
well as hibernation (Stawski et al. 2014), and thus may affect
individual survival and reproductive success.

Both modelling and empirical studies suggest that climate
change influences bat distribution (Rebelo et al. 2010; Sherwin
et al. 2013; Razgour et al. 2013). Yet, to our best knowledge, no
study has attempted to disentangle the genuine effects of cli-
mate change from those of land-use modifications to identify
the key factors actually driving changes in bat distribution.
Urbanisation and climate change may both play a role in induc-
ing range shifts or expansions. In particular, they may act syn-
ergically on species adapted to warmer climates (e.g. Mediter-
ranean species) as large urban settlements can act as Bthermal
islands^ favouring distributional changes (Arnfield 2003).

Kuhl’s pipistrelle (Pipistrellus kuhlii) offers a unique oppor-
tunity to investigate the relative effects of climate change and
urbanisation on species distributions for a number of reasons.
First, in a climate change scenario, this typically Mediterranean
species is expected to expand its range in response to increasing

temperatures (Rebelo et al. 2010), as regions at higher latitudes
would become suitable for the species. Second, P. kuhlii has
synurbic habits (Dietz et al. 2009; Russo and Ancillotto 2015),
roosting frequently in buildings and commonly foraging at
streetlamps (Barak and Yom-Tov 1989; Russo and Jones
1998; Serangeli et al. 2012). Finally, despite its sedentary be-
haviour (Dietz et al. 2009), P. kuhlii has expanded its range
northeast in recent years, colonising regions of central and East-
ern Europe during the last three decades (Sachanowicz et al.
2006). In most cases, the first records of single individuals
(initially regarded as vagrants) have been followed by observa-
tions of reproductive bats or maternity colonies, indicating suc-
cessful colonisation of the new region.

In this study, we assess the roles of climate change and
urbanisation as drivers of P. kuhlii range expansion. We apply
species distributionmodelling to predict how the species prob-
ability of presence changed in Europe since 1970, and com-
pare the relative contributions of climate and urbanisation.
Particularly, we tested two hypotheses, namely whether
P. kuhlii range expansion is influenced (1) by climate change
only or (2) by a synergic concurrence of climate change and
urbanisation. In the former scenario, we predict that P. kuhlii
has been able to colonise areas where the climate has become
warmer, whereas in the latter scenario, we predict that climate
change has combined with an increase in urbanisation to pro-
vide more roosting and foraging opportunities.

Materials and methods

Data collection

We set up a database of all reliable records of P. kuhlii (based
on authors’ direct observation or acoustic identification or
provided by bat specialists) for which both point precision
and collection date were known, totalling 25,132 occurrence
points. To assess the extent of P. kuhlii range expansion after
1980, we calculated and compared the area of historical extent
of occurrence (after Stebbings and Griffiths 1986) with that of
the current extent of occurrence, based on our dataset, and
obtained a 100 % minimum convex polygon following IUCN
(2012). To model species distribution, we employed three bio-
climatic variables and one variable of urbanisation potentially
influencing P. kuhlii range. To select variables, we considered
the thermophilous nature of this bat, the fact that it hibernates
in winter (Dietz et al. 2009) and its significant exposure to
water loss linked to the dry Mediterranean summer (Russo
et al. 2012). Therefore, we selected the environmental predic-
tors that were most likely to limit P. kuhlii distribution, i.e. the
average minimum temperature of the four coldest months,
mean precipitation and precipitation seasonality (=standard
deviation of mean precipitation). Layers of monthly minimum
temperatures and mean precipitations were downloaded from
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the Climatic Research Unit website (CRU TS Version 3.22;
http://www.cru.uea.ac.uk/cru/data/hrg/cru_ts_3.22/). Because
the species’ range expansion is thought to have begun in the
1980s (Sachanowicz et al. 2006), we averaged these monthly
layers to derive three covariates representative of four time
steps (1971–1980, 1981–1990, 1991–2000, 2001–2013). We
employed artificial illumination as a proxy for urbanisation be-
cause the two factors are strongly associated with each other and
the former is important in favouring P. kuhlii foraging success
(Tomassini et al. 2014). We downloaded 1992–2012 annual
layers of nocturnal stable artificial lights from the National Oce-
anic and Atmospheric Administration (NOAA) archives (http://
ngdc.noaa.gov/eog/dmsp/downloadV4composites.html#AXP).
These layers were averaged to correspond to two time steps
respectively representing 1992–2000 and 2001–2012. Older
records of nocturnal stable light corresponding to years 1971–
1990, as well as other variables representing urbanisation, were
not available.

Time steps selected for environmental variables had un-
equal lengths due to constraints in data availability: rather than
considering a final 3-year step, which might have been too
short to be representative and thus could be influenced by
random fluctuations, we included such years into the preced-
ing time step. This was assumed to have negligible effects on
the comparison of values between time steps.

A source of bias in species distribution modelling is
spatial autocorrelation of data points. These must be in-
dependent otherwise they might bias the predictions to-
wards areas with higher pseudo-replication. In addition,
species distribution models based on presence-only data
assume an even sampling effort in the study area (Elith
et al. 2010), i.e. that no geographic bias occurs in the
presence dataset. Opportunistic data collection is gener-
ally biased toward well-sampled areas, and when geo-
graphic bias in sampling effort correlates with environ-
mental gradients, Species Distribution Model (SDM)’s
predictions may reflect the joint distribution of probabil-
ities of presence and sampling effort (Guillera-Arroita
et al. 2015). In order to avoid spatial autocorrelation in
point data, and environmental biases, we followed a two-
step approach. First, we retained only one point per 5-km
cell, corresponding approximately to the size of individ-
ual home ranges of the species (Serangeli et al. 2012),
resulting in 8882 points. Second, we developed a 1°-res-
olution grid covering the whole study area: points falling
in each grid cell were given a weight which was inverse-
ly proportional to the number of points occurring in the
cell, so that each grid cell had the same total weight.
This step allowed us to attribute a greater weight to the
points in under-sampled areas than to those in areas
characterised by a higher sampling effort, thus reducing
the spatial bias towards Mediterranean countries where
the species is abundant and frequently observed.

Species distribution models

Illumination satellite data were only available since 1992, so
we developed two distribution models following a multi-
temporal approach (Maiorano et al. 2013) in which we includ-
ed points from all years to each of which we assigned the
covariate values of the respective time step. The rationale for
using a multi-temporal approach is that the observed distribu-
tion of species might not reflect the species distribution poten-
tial; hence, a species distribution model fitted on current data
may underestimate the potential distribution when projected
in time and/or space. A multi-temporal approach makes it
possible to use data points corresponding to a broad temporal
window, and thus better approximate the species fundamental
niche (Maiorano et al. 2013).

A first model was trained on all occurrences using only cli-
matic variables, and was projected for the four time steps be-
tween 1970 and 2013. A second model was trained only on
occurrences recorded after 1990 in order to use both climatic
and light variables, and was projected for the last two time steps.

We sampled 10,000 pseudo-absences (Barbet‐Massin et al.
2012) distributed in each time step proportionally to the tempo-
ral distribution of presence points across the time steps, and
assigned them a weight intermediate to the weights calculated
for presence points in order to have an equal overall weight of
presences and absences. It is widely acknowledged that the rel-
ative performances of alternative distribution model algorithms
depend on several conditions. An ensemble forecasting ap-
proach makes it possible not to rely on a single modelling algo-
rithm but to combine different models (Araújo & New 2007).
We adopted an ensemble modelling approach using the R
Biomod2 package (Thuiller et al. 2009) by averaging five dif-
ferent models: generalised linear models (GLMs), generalised
additive models (GAMs), artificial neural networks (ANNs),
generalised boosted models (GBMs) and multivariate adaptive
regression splines (MARS). Each modelling algorithm was rep-
licated 50 times using 80%of the data as the training dataset and
the remaining 20% as the testing dataset. We built the ensemble
model by applying a weighted average on the True Skill Statis-
tics (TSS) (Allouche et al. 2006). We then projected the ensem-
ble model predictions for each time step.

Results

Overall, the extent of occurrence of P. kuhlii (Fig. 1) estimated
with a minimum convex polygon expanded from 1,510,116 to
5,946,351 km2, corresponding to an almost fourfold
(393.7 %) increase.

In both models, the mean temperature of the coldest quarter
was the most important variable constraining P. kuhlii distribu-
tion. The second and third variables in order of decreasing im-
portance were mean precipitation and its variability across the
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year. In the second model also including illumination, this var-
iable yielded a positive relationship with the probability of pres-
ence of the species, although it was less important than the other
three predictors (Table 1). Both ensemble models had very high
Rreceiver Operating Characteristic (ROC) values. Adding arti-
ficial light did not improve model predictions (Table 2).

In the model built with climatic variables only, the proba-
bility of presence estimated within the expansion range
showed an increase since 1970, with an inverse trend in the
last decade in Ukraine, Belarus and western Russia, and de-
creased also in the Balkans (Fig. 2). In the model including
light (Fig. 3), the inverse trend of the last decade in Eastern
Europe was partly compensated by an increase in artificial
illumination (Fig. 4).

In the last two decades, the points of new occurrence were
characterised by a considerable increase in minimum temper-
ature and to a lesser extent by an increase in artificial illumi-
nation (Online Resources 1 and 2).

Discussion

Our results strongly support the hypothesis that in the last four
decades climate change has acted as the major driver of
P. kuhlii range expansion across northeastern Europe. Partic-
ularly, increasing mean winter temperatures seem to be the
most important factor explaining the species’ expansion. The
other climate factors we considered, i.e. precipitation season-
ality and mean precipitation, were also relevant predictors, as
expected for factors affecting water and insect availability
(Frick et al. 2010) and thus influencing bat survival and repro-
ductive success (Tuttle 1976; Berková et al. 2014). Yet, in the
study period, both precipitation factors fluctuated rather than
change in a specific direction. The increase in artificial light
that occurred in the last decades, which we assumed to be a
proxy of urbanisation, was a less powerful predictor of
P. kuhlii range expansion despite the strong dependence of
this bat on urban areas (Goiti et al. 2003).

Pipistrelles are adaptable bats, exhibiting pronounced be-
havioural and ecological plasticity (Ancillotto et al. 2015;
Russo and Ancillotto 2015). For example, the migratory
Pipistrellus nathusii has been suggested to react to climate
change by modifying its wintering and breeding ranges
(Martinoli et al. 2000; Lundy et al. 2010; Ancillotto and
Russo 2015). For this species, however, only a relatively
small-scale expansion in range was recorded. P. kuhlii is ac-
tually the first bat species for which a continent-scale range
increase was recorded (Sachanowicz et al. 2006). The species
was originally restricted to theMediterranean basin, east to the
Balkans, west to the Iberian Peninsula, south to the Maghreb
coastline and north to the Alps and western France (Stebbings
and Griffiths 1986). In the 1980s, P. kuhlii was reported from
northern France (Leger 1992) and Bulgaria (Ivanova and
Popov 1994), then in a number of other countries, including
northern (UK: Bat Conservation 2010; Russia: Sachanowicz
et al. 2006) and eastern regions (Czech Republic: Reiter et al.
2007; Slovakia: Cel’uch and Ševčík 2006, Danko 2007;
Ukraine: Kedrov and Seshurak 1999; Hungary: Fehèr 1995;
Romania: Ifrim and Valenciuc 2006, Dragu et al. 2007; Bul-
garia: Ivanova and Popov 1994, Benda et al. 2003; Serbia:
Paunović and Marinković 1998; Poland: Sachanowicz et al.
2006, Popczyk et al. 2008).

Fig. 1 Eurasian range of Pipistrellus kuhlii (shades of grey). Dark grey
historical range (after Stebbings and Griffiths 1986), light grey current
range comprising 1980–2013 occurrence data

Table 1 Mean importance (±SD) of model predictors averaged across
five models (GLM, GAM, ANN, GBM, MARS) for the distribution of
Pipistrellus kuhlii using three climatic variables (climate model) and the
same variables plus a proxy of urbanisation (climate + light model)

Predictor Climate Climate + light

Mean temperature of the coldest quarter 0.63 ± 0.08 0.53 ± 0.04

Precipitation seasonality 0.13 ± 0.11 0.18 ± 0.14

Mean precipitation 0.22 ± 0.21 0.10 ± 0.12

Light 0.08 ± 0.03

Table 2 Model evaluations for the distribution of Pipistrellus kuhlii
using three climatic variables (climate model) and the same variables
plus a proxy of urbanisation (climate + light model)

Testing data Sensitivity Specificity

Climate only

ROC 0.971 96.347 90.464

Climate + light

ROC 0.97 96.96 90.44
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In agreement with our first hypothesis, climate change
alone could explain P. kuhlii range expansion. The relative
importance of climate and urbanisation is however likely to
be scale-dependent: the pattern we found is best explained
according to climate change, but urbanisation could have
played a role in some areas such as Eastern Europe, still un-
dergoing fast industrial and urban development (Palang et al.
2006). The probability of presence of P. kuhlii in the climate-
only model decreased in Eastern Europe in the last 40 years;
yet, this effect disappeared in the model including urbanisa-
tion, in which the probability of presence remained stable.

Although this result might actually relate to an effect of urban
expansion, the model accounting for the presence of artificial
illumination did not perform better than the climate-only mod-
el, indicating a negligible contribution of urbanisation. Cli-
mate might influence the species’ large-scale distribution
whereas illumination—per se or as an urbanisation proxy—
might be important at a local scale and thus go unnoticed in
large-scale models such as ours. While colonisation of new
areas is likely to have been prompted by climate, the availabil-
ity of buildings may have locally helped new bat colonies to
establish themselves in the newly reached regions. In

Fig. 2 Predicted distribution of Pipistrellus kuhlii at five 10-year time steps (a 1961–1970, b 1971–1980, c 1981–1990, d 1991–2000, e 2001–2012)
according to three climatic variables: mean annual precipitation, precipitation seasonality and mean temperature of the coldest quarter

Fig. 3 Predicted distribution of
Pipistrellus kuhlii at two 10-year
time steps (a 1991–2000, b 2001–
2012) according to three climatic
variables (mean annual
precipitation, precipitation
seasonality and mean temperature
of the coldest quarter) and one
urbanisation variable (stable
nocturnal artificial lights)
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accordance with this interpretation, most Bfirst occurrence^
records of P. kuhlii were reported for small towns, villages
and large cities (e.g. Ifrim and Valenciuc 2006; Sachanowicz
et al. 2006; Dragu et al. 2007; Popczyk et al. 2008), while an
increase in artificial light levels in the areas where P. kuhlii
expanded in the last four decades was evident from our anal-
yses. The advantage obtained in the urban habitat may have
concerned especially roost availability, whereas given its ver-
satile foraging behaviour (Russo and Jones 2003; Di Salvo et
al. 2009; Serangeli et al. 2012), the species could have found
profitable feeding grounds in a variety of habitats in newly
colonised areas besides human settlements. It could be argued
that the 1980s reference range we used (Stebbings and
Griffiths 1986) may have underestimated the real extent of
the species distribution as bat surveys were less common in
those times. Although of course we cannot rule this out, the
presence of synurbic bats is easily recorded, so there is little
risk that the observed expansion would in fact be an artefact of
different research efforts over time.

Detecting and quantifying a species’ range shift or expan-
sion is a fundamental step to predict, and thus prevent, poten-
tial impacts on other species and ecosystems. Such impacts
may have serious consequences: for example, when the red
fox (Vulpes vulpes) invaded northern Alaska in response to
climate change (Hersteinsson and Macdonald 1992), it
outcompeted the arctic fox (Vulpes lagopus). Population

expansion of Pipistrellus pipistrellus in Switzerland, presum-
ably sustained by an expansion of artificial illumination, may
have caused the decline of the more sensitive Rhinolophus
hipposideros by competition for food (Arlettaz et al. 2000).
Range shifts and expansions of adaptable species may also
lead to community-level alterations, as in the case of altitudi-
nal shifts due to climate change documented in small mammal
communities (Moritz et al. 2008; Rowe et al. 2010), where
high-altitude specialists tend to disappear, replaced by mesic-
adapted species. Biotic homogenisation may result from range
shifts, including those driven by climate change (McKinney
and Lockwood 1999), because while few species spread,
many sensitive species experience a contraction of their
ranges and eventually go extinct (Thomas et al. 2004).

In conclusion, although a correlative approach such as that
of our modelling exercise cannot detect any cause and effect
relationship, it nonetheless strongly supports the climate
change hypothesis; so climate is the factor best explaining
P. kuhlii’s range expansion recorded over the last 40 years.
According to our work P. kuhlii is a Bwinner^ in the context
of climate change: given its high ecological flexibility, it might
be a strong competitor of other bats in the newly occupied
regions and have serious consequences on bat assemblages,
a scenario that certainly deserves careful investigation.
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