
Parasitology International 65 (2016) 163–170

Contents lists available at ScienceDirect

Parasitology International

j ourna l homepage: www.e lsev ie r .com/ locate /par in t
Distribution and molecular phylogeny of biliary trematodes
(Opisthorchiidae) infecting native Lutra lutra and alien Neovison vison
across Europe
Ellie Sherrard-Smith a,b,⁎, David W.G. Stanton a, Jo Cable a, Pablo Orozco-terWengel a, Vic R. Simpson d,
Morten Elmeros c, Jiska van Dijk e, Franck Simonnet f, Anna Roos g, Charles Lemarchand h, Lukáš Poledník i,
Petr Heneberg j, Elizabeth A. Chadwick a

a School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
b Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
c Department of Bioscience, Aarhus University, Grenåvej 14, Kalø, DK-8410, Rønde, Denmark
d Wildlife Veterinary Investigation Centre, Chacewater, Cornwall TR4 8PB, UK
e Norwegian Institute for Nature Research, PO Box 5685, Sluppen, NO-7485 Trondheim, Norway
f Groupe Mammalogique Breton, Maison de la Rivière, 29450 Sizun, France
g Department of Contaminant Research and Monitoring, Swedish Museum of Natural History, PO Box 50007, SE-104 05, Stockholm, Sweden
h VetAgro Sup, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280 Marcy-l'etoile, France
i ALKA Wildlife, o.p.s., Lidéřovice 62, CZ-380 01 Peč, Czech Republic
j Charles University in Prague, Third Faculty of Medicine, Ruská 87, CZ-100 00 Prague 10, Czech Republic
⁎ Corresponding author.
E-mail address: e.sherrard-smith@imperial.ac.uk (E. S

http://dx.doi.org/10.1016/j.parint.2015.11.007
1383-5769/© 2015 The Authors. Published by Elsevier Ire
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 24 February 2015
Received in revised form 20 November 2015
Accepted 23 November 2015
Available online 24 November 2015

Keywords:
Eurasian otter
American mink
Trematode distribution
Gene flow
Introduced species
The recent identification of Pseudamphistomum truncatum, (Rudolphi, 1819) (Trematoda: Opisthorchiidae) and
Metorchis bilis (Braun, 1790) Odening, 1962 (synonymous with Metorchis albidus (Braun, 1893) Loos, 1899 and
Metorchis crassiusculus (Rudolphi, 1809) Looss, 1899 (Trematoda: Opisthorchiidae)) in otters fromBritain caused
concern because of associated biliary damage, coupledwith speculation over their alien status. Here, we investigate
the presence, intensity and phylogeny of these trematodes in mustelids (principally otters) across Europe (Czech
Republic, Denmark, France, Germany, Norway, Poland and Sweden and Britain). The trematodes were identified
to species using the internal transcribed spacer II (ITS2) locus. Both parasites were found across Europe but at
unequal frequency. In the German state of Saxony, eight out of eleven (73%) otters examined were infected with
P. truncatum whilst this parasite was not found in either mink from Scotland (n = 40) or otters from Norway
(n=21). Differences in the phylogenies between the two species suggest divergent demographic histories possibly
reflecting contrastinghost diet or competitive exclusion,withM. bilis exhibiting greatermitochondrial diversity than
P. truncatum. Shared haplotypes within the ranges of both parasite species probably reflect relatively unrestricted
movements (both natural and anthropogenic) of intermediate and definitive hosts across Europe.

© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Although parasites play an integral role in ecosystem functioning
[1–2], there is incomplete knowledge of their geographic and host
ranges. This arises in part because of themorphologically cryptic nature
of many parasitic taxa and, specifically, the challenge of detection and
species determination [2–3]. This is particularly problematic for
invading parasites, which often present serious risks to novel host
populations, largely because of naïve host immune responses
coupled with disruption of ecosystem equilibrium [4]. The recent
identification of Pseudamphistomum truncatum (Rudolphi, 1819)
herrard-Smith).

land Ltd. This is an open access articl
and Metorchis albidus (Braun, 1893) Loos, 1899 (Trematoda:
Opisthorchiidae) in Britain [5–6] caused initial concern because of
the biliary damage to otters that was associatedwith both digeneans,
and speculation over their alien status in Britain [5–7].

P. truncatum occurs across Europe and was reported in the early
1900s [8] from mammals that are native to Britain. However, without
details of host origin, the recorded hosts (red fox Vulpes vulpes [also
see 7], grey seal Halichoerus gryphus, domestic cats Felis domestica and
dogs Canis familiaris, common seal Phoca vitulina and the harp seal
Phoca groenlandica [8]) may have been sampled in continental Europe.
Therefore, it remains unclear whether P. truncatum is a recent invader
in Britain.

Historically, the taxonomy of theMetorchis genera has been compli-
cated because of variable parasite morphology in multiple vertebrate
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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hosts (including man) across Eurasia [9–12]. Since the discovery of
M. albidus in Britain [6], molecular analysis has revealed an identical
ITS2 sequence across all specimens identified morphologically as
M. albidus (collected from otters Lutra lutra and mink Neovison vison
as part of the current study), as well as specimens identified as M. bilis
(Braun, 1790) Odening, 1962, and M. crassiusculus (Rudolphi, 1809)
Looss, 1899 (principally from fish-eating birds and opportunistic birds
of prey; Heneberg, pers. Comm.). Consequently, we support the view
that Metorchis bilis (Braun, 1890), M. albidus and M. crassiusculus are
synonymous, and the name bilis should take priority [see also [12] and
references therein]. There are only ambiguous historic records of
M. bilis/M. albidus in Britain [8], whereas M. crassiusculus has been
noted with more conviction from British birds but only using mor-
phological identification methods [13]. Species determination of a
morphologically challenging genus likeMetorchis can nowbe addressed
molecularly [e.g. [14], Heneberg, pers. Comm.]. The damage associated
with host-parasite interactions makes the identification of parasitic
species and their geographic ranges particularly crucial for successful
conservation efforts [15–16].

The life-cycle of the Opisthorchiidae family has been elucidated only
rarely [see [12]] but involves two intermediate and a definitive host. For
both P. truncatum andM. bilis, the first intermediate hosts are freshwater
snails. A free-living cercarial stage is then released and encysts in a fresh-
water fish intermediate host. The development of P. truncatum can be
completed once consumed by a mammalian definitive host, whereas
M. bilis seems more generalist in terms of suitable definitive hosts
(piscivorous mammals and birds) [8–13].

Here, we aimed to explore the distribution, intensity and molecular
phylogenies of P. truncatum and M. bilis in otters and mink from across
Europe. To address this, we collected samples across Europe, confirmed
species identification using internal transcribed spacer region II (ITS2)
ribosomal DNA sequences, and compared genetic diversity between
the parasite species and between populations using two mitochondrial
DNA markers (COX1 and COX3).

2. Material and methods

2.1. Sample collection

Gall bladders of 723 Eurasian otters (L. lutra) and 144 American
mink (N. vison) were sourced from across Europe. Samples were includ-
ed from Britain, Czech Republic, Denmark, France, Germany, Norway,
Poland, Scotland, and Sweden, and preserved in 95% ethanol (a list of
samples and host locations is provided in Supplementary Information
1). Each gall bladderwas opened along its length in a petri dish containing
fresh ethanol. The bladders were examined thoroughly and then rinsed,
everted and the mucosa was finely combed to ensure all parasites were
Table 1
Summary of otter (Lutra lutra) andmink (Neovison vison) biliary parasites. The country of o
corresponding percentage and intensities of the two species (Pseudamphistomum truncatu

Location N (otters unless otherwise
specified)

Pseudamphistomum t

Number of infected
hosts (%)

Czech Republic * –
Denmark 52 3 (5.8)
France, Brittany 22 0
France, Poitou-Charentes 19 1 (5.3)
Germany, Saxony 11 8 (72.7)
Norway 21 0
Poland * –
Scotland 40 (mink) 0
Sweden 12 2 (16.7)
England and Wales 586 79 (13.5)
England and Wales 104 (mink) 9 (8.7)

*Parasites provided directly. +Mean intensity defined as the mean number of parasites per infected
found, morphologically identified using a dissecting microscope
according to [17] and counted. A sub-sample of parasites (N = 65,
see Table 1) was selected for molecular analysis. For British samples
(positive caseswere foundwithin England andWales), stratified ran-
domsamplingwas applied, to select trematodes broadly representative of
the geographic distribution previously identified [6] (P. truncatum from
the Counties of Somerset, Dorset, Gwent and Powys; M. bilis from
Bedfordshire, Cambridgeshire, Essex, Hertfordshire and Suffolk). For
continental samples DNA sequencing was performed on all samples.

A general linearmodel (GLM),with an associated binary error distri-
bution, was used to compare the parasite prevalence (the infection
status of an individual regardless of the number of parasites present;
infected = 1, uninfected = 0) between European regions where the
sample size was equal to or larger than 10. To investigate intensity
(the number of parasites infecting each individual, excluding those
without infection) differences across host populations in Europe, a
GLM (with a negative binomial error distribution) was fitted to the
intensity data for regions where sample size of infected hosts was
greater than or equal to 4. This analysis of intensity was limited however
because of the small sample size available (Table 1). All analyses were
conducted in R, version 3.2.0 [18].

2.2. DNA analysis

The internal transcribed spacer II (ITS2 P. truncatum: GenBank
Accession number: JF710315; M. albidus (synonymous with M. bilis):
GenBank Accession number: JF710316) of the ribosomal DNA region
was used for species discrimination because it has been shown to
be relatively conserved in the Digenea and has been used previously
for interspecific analyses [12,14,19–20] while fragments of the
mtDNA COX1 and COX3 genes were used to examine genetic variation
of P. truncatum and M. bilis populations across Europe.

DNA was extracted fromwhole individuals. The tissues were stored
in 90% ethanol, which was evaporated by gentle heating (55 C̊) prior to
digestion of the sample. Whole individual trematodes were digested for
3 h at 55 °C in 15 μl TE buffer containing 0.45% Tween 20 and 2 μg
Proteinase K, followed by 10 min at 95 °C to denature the proteinase K
[adapted from 21]. This treatment was sufficient to extract the DNA in
preparation for the polymerase chain reaction (PCR), the mixture was
centrifuged prior to use in the PCR. The PCR was conducted using 2 μl
of the DNA extract in a final volume of 10 μl, containing: 1× PCR buffer
II (Applied Biosystems), 2 mM MgCl2 (Applied Biosystems), dNTP
(0.25 mM each), primers (1 μM each) (ITS2 rDNA: Ophet F1 5′-CTCG
GCTCGTGTGTCGATGA-3′ and Ophet R1 5′-GCATGCARTTCAGCGGGTA-3′
see [22]; or COX1 mtDNA: ThaenCO1F 5′-CGGGTTTTGGAGCGTCATTC-3′
and ThaenCO1R 5′-ACAGGCCACCACCAAATCAT-3′; or COX3 mtDNA:
CO3FTremat 5′-ATGAGWTGATTACCKTT-3′ and CO3RTremat 5′-ACAACC
rigin (location), total number of hosts examined (N), number of infected hosts and the
m and Metorchis bilis) isolated from European piscivorous mammals.

runcatum Metorchis bilis

Mean intensity+

(N for DNA analysis)
Number of infected
hosts (%)

Mean intensity
(N for DNA analysis)

– (1) – – (1)
2.3 (4) 16 (30.8) 3.4 (8)

- 4 (18.2) 2 (4)
4 (1) 0 –
29 (8) 2 (18.2) 1 (1)

– 0 –
– (2) – –
– 0 –

96 (3) 2 (16.7) 13.5 (2)
28.3 (17) 46 (7.8) 4.1 (12)
222 (0) 0 –

host.



Fig. 1. Proportion of otters, Lutra lutra, that was positive for Pseudamphistomum truncatum andMetorchis bilis, Opisthorchiidae, across Europe. Size of the circles reflects sample size (see
sample number, n). Please see supplementary information 1 for location details.

Table 2
Summary of the data on the genetic diversity of Pseudamphistomum truncatum andMetorchis
bilis across Europe: Samples size (number of parasite sequences), the gene sequenced, the
population (region of origin), the haplotype diversity, the nucleotide diversity (π), and the
number of haplotypes within the population.

Parasite Sample
size

Gene Population
(region of
origin)

Haplotype
diversity/nucleotide
diversity (π)

Number of
haplotypes

P. truncatum 6 COX1 England and
Wales

0.5333/0.0049 2

5 COX1 Scandinavia 0.400/0.0009 2
3 COX1 Other Europe 0.667/0.0031 4
5 COX3 England and

Wales
0.400/0.0011 2

6 COX3 Scandinavia 0.600/0.0017 3
10 COX3 Other Europe 0.756/0.0035 5

M. bilis 2 COX1 England and
Wales

1.000/0.0322 2

4 COX1 Scandinavia 0.833/0.0207 3
6 COX1 Other Europe 0.933/0.0210 5
1 COX3 England and

Wales
n/a 1

6 COX3 Scandinavia 0.600/0.0152 2
4 COX3 Other Europe 0.500/0.0127 2
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ACACATAATCCACAAAATG-3′ as appropriate) and 0.5 U Taq DNA
polymerase (Invitrogen). The mitochondrial primers were designed
in primer-BLAST [23]. PCR conditions were: 95 °C for 5 min, followed
by 35 cycles of 94 °C for 30 s, 53 °C (ITS2 and COX3) or 55 °C (COX1
mtDNA) for 1 min and 72 °C for 1 min, with a final extension step of
72 °C for 7min (GenAmp PCR System 9700, Applied Biosystems). The
samples were run on a 1.5% agarose gel and produced 300 bp and
333 bp (ITS2, P. truncatum and M. bilis, respectively), 435 bp (COX1)
and 394 bp (COX3) amplicons. Sequencingwas conducted byMacrogen
(Macrogen Inc., Seoul, South Korea). For P. truncatum, 27 individuals
were sequenced for ITS2 rDNA, 16 for COX1 and 22 for COX3 mtDNA
while for M. bilis 22 individuals were sequenced for ITS2 rDNA, 12 for
COX1 and 11 for COX3 mtDNA. Alignment of forward and reverse
sequences was performed in Sequencher™ (version 4.9, Gene Codes
Corporation, USA).

The species present were identified using the ITS2 sequences.
Unique COX1 and COX3 haplotypes were identified as follows, and
have been assigned GenBank Accession numbers KP869069–
KP869078, KP869080–KP869096 (Supplementary information 2):
seven P. truncatum COX1 (unique haplotypes from the Czech Republic,
France, Germany, Poland, Sweden, 1 unique haplotype from England
and Wales, and 1 haplotype common to England and Wales, Denmark
and Sweden); eight P. truncatum COX3 (unique haplotypes from the
Czech Republic, Denmark, England and Wales, Poland, Sweden, two
unique sequences from Germany, and one haplotype common to
Denmark, England and Wales, Germany and Sweden); nine M. bilis
COX1 (unique haplotypes from the Czech Republic, Denmark, England
and Wales, and Germany, three unique haplotypes from France, one
haplotype common to Denmark and England and Wales, and one
haplotype common to Denmark and Sweden); three M. bilis COX3 (a
unique haplotype to England and Wales, one common to Denmark
and France, and one common to Denmark and Germany). Bayesian
inference (BI) methods were used to reconstruct the phylogenetic
relationships among the mtDNA haplotypes for COX1 and COX3
separately for each species using MrBayes version 3.2 [24]. One million
Markov Chain Monte Carlo (mcmc) generations were carried out with
the initial 25% discarded as burn in. Convergence was assessed through
effective sample size values and correlation plots. MrModeltest version
2 [25] was used to estimate the adequate model of sequence evolution
of these datasets. For both loci in each species the inferred model of
evolution was Hasegawa, Kishino and Yano. We used a gamma-shaped
rate variation with a proportion of invariable sites (Invgamma). The
human liver fluke Clonorchis sinensis (Trematoda: Opisthorchiidae) was
used as an outgroup for both datasets. To complement the phylogenies,
and to further explore mtDNA structure, we also constructed haplotype

Image of Fig. 1


Fig. 2. MrBayes phylogeny and TCS network for Pseudamphistomum truncatum based on the cytochrome c oxidase sub-unit I (COX1) mitochondrial DNA region (435 base pairs) across
Europe. Phylogeny node labels show raw branch lengths stars indicate Bayesian posterior probabilities (* N0.5, ** N0.65, *** N0.85). Each black dot on the network corresponds to a single
mutational change.
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networks for both P. truncatum andM. bilis using TCS v1.21 [26]. Genetic
diversity statistics (haplotype and nucleotide diversity) were calculated
using DnaSP v5 [27].

3. Results

In total, 723 otters and 144 mink gall bladders were dissected from
samples taken across 8 European countries (see Table 1, Fig. 1). The
highest prevalence of P. truncatum was detected in otters from
Germany (73%, although the sample size was low; 8 out of 11 otters
were infected) (GLM binomial error distribution: χ2769,757 = 4.188,
SE = 0.901, p b 0.001) while M. bilis was most prevalent in otters
from Denmark (16 out of 52, 31%) (GLM with a binomial error distribu-
tion: χ2769,757 = 2.333, SE = 0.6061, p b 0.05). There were, in contrast,
no parasites in any of the gall bladders from Norwegian or Scottish
samples, whereas otter populations examined from all other countries
had biliary trematodes (Table 1). Only mink samples were examined
from Scotland and nonewere infectedwhilst mink in England had biliary
trematodes.

There was no significant difference in the intensity of P. truncatum
among infected otters from England and Wales or Germany (the only
countries with large enough sample sizes to compare statistically,
GLM negative binomial error distribution: F = 0.3167, df = 86, p =
0.57). Equally, the intensity of M. bilis infection did not differ between
comparable data sets from France, Sweden, and England and Wales
(GLM negative binomial error distribution: F = 2.42, df = 62, p =
0.097).

Only a single ITS2 haplotype was identified across Europe for each
parasite species. Nucleotide diversity between the two species was
0.01347 across 300 bp. Analysis of mitochondrial DNA markers COX1

Image of Fig. 2


Fig. 3.MrBayes phylogeny and TCS network for Pseudamphistomum truncatum based on the cytochrome c oxidase sub-unit III (COX3) mitochondrial DNA region (394 base pairs) across
Europe. Phylogeny node labels show raw branch lengths stars indicate Bayesian posterior probabilities (* N0.5, ** N0.65, *** N0.85). Each black dot on the network corresponds to a single
mutational change. There were no meaningful branch lengths for the phylogeny due to low genetic variation at this locus for P. truncatum COX3.
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and COX3 showed greater diversity within M. bilis than P. truncatum
(Table 2).

For P. truncatum and M. bilis respectively, COX1 haplotype diversity
(Hd) was 0.767 and 0.955, while COX3 Hd was 0.541 and 0.618; COX1
nucleotide diversity (π) was 0.007 and 0.019, and COX3 π was 0.002
and 0.018. These differences corresponded to 16 segregating sites
in P. truncatum (9/435 for COX1, 7/394 for COX3) and 35 in M. bilis
(19/435 for COX1 and 16/394 for COX3). The majority of haplotypes
(for both species, across both COX1 and COX3) were unique to a single
source country. For P. truncatum, 13/15 were unique; exceptions were
one haplotype for COX1 (Hap01) common to England and Wales,
Denmark and Sweden (Fig. 2), and one for COX3 (Hap02) widespread
throughout Europe (there were no meaningful branches) (Fig. 3).
For M. bilis a smaller proportion (8/12) were unique to a single source
country. Exceptions for COX1 were Hap03 (Denmark and Sweden)
and Hap08 (Denmark, and England and Wales) (Fig. 4), and for COX3,
Hap01 (Denmark and Germany) and Hap02 (Denmark and France)
(Fig. 5).

The M. bilis phylogeny showed two monophyletic clades, for both
COX1 and COX3. Branch lengths of the P. truncatum clades were
0.005–0.008 for COX1 (Fig. 2; genetic diversity of COX3 was too low to
produce meaningful branch lengths, Fig. 3), whereas branch lengths
for the two M. bilis clades were 0.023 and 0.036 for COX1 (Fig. 4) and
0.022 and 0.023 for COX3 (Fig. 5).
4. Discussion

The discoveries of both P. truncatum andM. bilis in British mammals
occurred as a direct result of systematic screening [5–6]. It is only with
systematic and widespread screening (e.g. [28,29]) combined with
molecular analysis that taxonomic confusion, such as that surrounding
Metorchis [9–12], can be elucidated, providing a clearer understanding
of parasite fauna and disease.

The P. truncatum samples showed lowmitochondrial genetic diversity
relative toM. bilis. This lower genetic diversity is observed in the shorter
branch lengths of the P. truncatum phylogeny, lower haplotype diversity
and shorter distance between the haplotypes in the genetic network.
These differences indicate considerable differences in the demographic
and evolutionary history of these species in Europe. Shared haplotypes
across multiple European countries suggests genetic mixing of both
parasite species, across Europe. There is insufficient evidence to attempt
to date an initial introduction toBritain for either species, but thepresence
of more than one haplotype (for both species) may indicate more than
one introduction event or long-term residency. Shared haplotypes
between Scandinavian and British samples (P. truncatum: Hap01, COX1;
M. bilis, Hap08, COX1) implicates Scandinavia as a potential origin for
both species into Britain.

The branch lengths for theM. bilis phylogeny are an order of magni-
tude longer than for the P. truncatum phylogeny. This, coupled with the

Image of Fig. 3


Fig. 4.MrBayes phylogeny and TCS network forMetorchis bilis based on the cytochrome c oxidase sub-unit I (COX1)mitochondrial DNA region (435 base pairs) across Europe. Phylogeny
node labels show raw branch lengths stars indicate Bayesian posterior probabilities (* N0.5, ** N0.65, *** N0.85). Each black dot on the network corresponds to a single mutational change.

168 E. Sherrard-Smith et al. / Parasitology International 65 (2016) 163–170
difference in the distributions of the haplotypes between the
two species implies differing demographic histories, which may
correspond to differences in their definitive hosts [e.g.,5,6,8,
12,13,30]. Pseudamphistomum truncatum is predominantly reported
from mammals [5–6,8] whilst M. bilis (and more specifically
synonym M. crassiusculus) are also noted from migratory birds
[[13], Heneberg, pers. Comm.], perhaps increasing the potential for
genetic mixing for M. bilis across Europe. Legislation is operative to
protect fish from disease (e.g. EU Council Directive 2006/88/EC)
but does not apply to most digeneans. In part, this relaxed approach
to screening fish for digeneans stems from their reported low level
impact on fish [but see 31–32] and it is therefore deemed unneces-
sary to restrict fish movements on this basis. Consequently, the wide-
spread translocation of fish stocks, natural migration of definitive hosts
and fish, alongside movement of snails and parasite eggs with plants,
gravel or water, across Europe almost certainly contributes to a wide-
spread distribution of digenean species. For example, P. truncatum is
found in Ireland [33] where cyprinid fish (the second intermediate host
for both P. truncatum and M. bilis) are not native but were introduced in
the 17th Century and have been continually relocated to new habitats
across Ireland ever since [34].

The distribution of P. truncatum across Europe appears to be focal,
although more extensive sampling would be required to examine
this further. TheGerman state of Saxonyhas a relatively high proportion
of P. truncatum infections (8/11) but only 11 otters were examined,
whilst the parasite was not found in mink from Scotland (n = 40) or
otters from Norway (n = 21). Previously, no biliary parasites were
found in another eleven otters screened in Scotland [7]. There are
no apparent barriers to spread according to the underlying distribution
of some of the potential host species: both the first and second inter-
mediate hosts (gastropod families Lymnaeidae and Bithyniidae, and
freshwater fish family Cyprinidae, respectively [[30], Sherrard-Smith
et al., unpublished data]), occur throughout Europe. The predicted
warmer conditions across Europe with climate change may suit
both species and encourage a Northerly movement of their current
distributions [22].

Image of Fig. 4


Fig. 5.MrBayes phylogeny and TCS network forMetorchis bilis based on the cytochrome c oxidase sub-unit III (COX3)mitochondrial DNA region (394 base pairs) across Europe. Phylogeny
node labels show raw branch lengths stars indicate Bayesian posterior probabilities (* N0.5, ** N0.65, *** N0.85). Each black dot on the network corresponds to a single mutational change.
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The density-dependent processes that determine the distribution of
host populations can result in spatial aggregation of parasite populations
[35] and have been used to explain the co-existence of species [e.g.
36–37]. The presence of two biliary parasites in the otter population
across Europe may contribute to the observed patchiness in the
distribution of each digenean. Speculatively, this may indicate that
interspecific competition or some level of acquired host immunity
is acting to separate P. truncatum and M. bilis and it is noteworthy
that across the entire study, only 5 co-infections (where 8 would
be expected by chance; 70/723 P. truncatum infections among 79
M. bilis positive hosts) were observed; 2 from Britain (out of 586 otters)
and 3 in Denmark (out of 52 otters), but none elsewhere, of 229 otters).
Specifically, a distinction between the geographic distributions of
M. bilis and P. truncatum was observed in England and Wales [6], and
France, with P. truncatum only found in the Poitou-Charentes Region
(a single specimen), and M. bilis only in Brittany (although our
sample size in France is relatively small: N = 22 Brittany, N = 19
Poitou-Charentes Region). Regional differences in host diet [e.g. 38] may
contribute to geographic variation in parasite exposure. Co-existence of
P. truncatum and M. bilis in the same host is rare despite geographic
overlap across continental Europe but also in England and Wales
where sample size is large enough (n = 586) to make stronger
conclusions [6].

Thepresence ofwidespreadCOX1 andCOX3haplotypes, particularly
forM. bilis, indicates populationmixing throughout Europe. The current
study provides an insight into the genetic structure, but also geographic
heterogeneity, of two widespread digeneans of threatened wild
mammals.
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